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Abstract

In this project, we propose a pipeline for Tip-of-
the-Tongue (ToT) Retrieval, focusing on ToT
queries referencing movies. This task is charac-
terized by long, verbose, and complex queries
often containing uncertainty. Motivated by the
challenges posed to current retrieval systems by
such queries, we leverage LLMs as query de-
composers, capitalizing on their ability to effec-
tively break down intricate queries into smaller
sequences that are easier to deal with. Further-
more, we study the usage of LLMs as zero-shot
re-rankers, since they have shown to achieve
state-of-the-art performance on other passage
re-ranking tasks. We apply our techniques to
the TREC-ToT 1 dataset, successfully improv-
ing the provided GPT-4 baseline by 65%. Code
is publicly available here.

1 Introduction

Current Information Retrieval (IR) systems are tai-
lored for situations where users can describe in-
formation needs precisely. The TREC-ToT track
focuses on the retrieval of movies where the user
poses a complex query, containing e.g. memories,
uncertainty, comparisons, and exclusion criteria.
Figure 1 shows an example of such a query, high-
lighting the challenging hedging sentences, and
social cues that do not contribute to the context.
Traditional IR systems often show limited effec-
tiveness in this scenario [2], since most available
benchmarks do not represent it, and resolving ToT
queries may need more information than what is
available on a common query-document pair [27].
Given the widespread popularity of movies and
the consequent extensive amount of data available
about them on the internet, the training of LLMs
like GPT-4 can naturally involve a significant ex-
posure to movie-related information, ultimately en-
hancing their ability to comprehend and resolve
movie-based ToT queries.

1https://trec-tot.github.io/

Movie from the early 2000s I believe about three peo-
ple living in an apartment but never running into each
other. One woman and two men are in the apartment.
The woman is the realtor or owner of the apartment
and at least one of the guys is a squatter/homeless. It
is a Korean or Chinese film I think. Art house flick
I think it won a few awards from film festivals like
Cannes. Help if you can!

Figure 1: Tip-of-the-tongue query. Hedging sentences
highlighted in yellow, and a social courtesy highlighted
in green. Our model correctly identifies “Vive L’Amour”
as the movie the user sought.

Hence, in this work, we aim to bridge the gap
between traditional IR systems and the demands
of ToT retrieval, by exploring possible approaches
to integrate LLMs into the retrieval pipeline. First,
in Section 3.1, we introduce our retrieval meth-
ods, including insights and solutions for the lim-
ited training data available for the TREC competi-
tion, and on the usage of LLMs as query decom-
posers, motivated by the fact that shorter and less-
hedging queries should be easier for first stage re-
trievers to deal with [40, 28]. Considering that
LLM-based re-ranking achieves state-of-the-art re-
sults in zero-shot passage re-ranking tasks [50], in
Section 3.2 we detail our LLM-based re-ranking
pipeline, which consists in top-100 listwise re-
ranking followed top-10 pointwise re-ranking.

Our results (Section 5) show that our pipeline
is able to surpass a GPT-4 baseline by 65%, show-
ing the efficacy of the proposed methods. Finally,
in Section 6, we provide a qualitative analysis of
the results, concluding that the performance of the
LLM as a re-ranker can be linked to popularity
metrics, as such metrics can influence the amount
of training data regarding a movie the LLM was
exposed to.

https://github.com/JMVCoelho/llms-project
https://trec-tot.github.io/
https://www.imdb.com/title/tt0109066/


2 Related Work

This section covers related work, initially present-
ing Large Language Models and Information Re-
trieval. The intersection of these two fields is mo-
tivated, and the Tip-of-the-Tongue Retrieval task
introduced.

2.1 Large Language Models

Recently, there has been a notable shift in ma-
chine learning for natural language processing.
This shift emphasizes using large pre-trained lan-
guage models in various tasks, leading to signifi-
cant progress across multiple fields, with models
like LLaMa [51], PALM 2 [1], and GPT 4 [38]
leading the way. Some fine-tuning approaches have
demonstrated impressive zero-shot generalization
to different tasks, e.g. RLHF [10], and instruct
fine-tuning [52]. However, this still requires train-
ing models with a very high number of parameters.
Multiple approaches have been proposed to over-
come this issue, for example by introducing a new
(small) set of parameters and freezing the remain-
ing ones [14, 22, 25], by selecting only a small
percentage of trainable parameters [55, 13], or by
re-parameterizing the model [15, 9, 29]. Prompt-
based methods [31], like few-shot prompting [7],
are also a useful alternative, effectively exploiting
LLMs generation capabilities without requiring fur-
ther model fine-tuning.

2.2 Information Retrieval

Within the field of IR, neural methods currently
achieve state-of-the-art results, particularly on tasks
that include ranking short text passages according
to relevance towards user questions [54]. Most
approaches rely on Transformer-based neural lan-
guage models, either following a bi-encoder archi-
tecture [45, 43] when performing top-N retrieval,
or a cross-encoder architecture [35, 39] for top-N
re-ranking.

Bi-encoders encode queries and passages inde-
pendently [45, 43]. This allows the offline index-
ing of individual passage representations through
methods that support the fast execution of maxi-
mum inner product searches such as FAISS [20].
Conversely, cross-encoders generate a representa-
tion for the concatenation of a query and a passage,
directly modeling the interactions between these
two components [35, 39]. The representation can
then be used to predict a score for the passage to
the query.

2.3 Intersection between IR and LLMs

Given the advancement on LLMs, research efforts
have emerged to explore the synergies between
retrieval and generation methods. For instance,
retrieval-augmented generation [19, 23, 6, 44]
leverages a retrieval model to get relevant infor-
mation to contextualize a prompt, enhancing re-
sponses to factual questions. Another example is
query generation, where an LLM is used to gener-
ate queries to be used as training data [5, 18] or for
document expansion [37, 36, 12]. In this work, we
follow studies that use LLMs as re-rankers through
prompting [49, 41]. This can be done in a listwise
fashion [33], pair-wise fashion [42], or pointwise
fashion [21].

2.4 Tip-of-the-Tongue Retrieval

Tip-of-the-Tongue Retrieval is characterized by
complex queries, often containing uncertainty and
inaccuracies, comprising a user description of an
item they have previously encountered but can’t
recall the identifier (Figure 1). Following the intu-
ition that smaller and simpler queries should be eas-
ier for current retriever models to deal with, query
decomposition techniques have been proposed for
this task [28], where the initial query is broken into
sub-queries focusing on different data types (dates,
possible title mentions, directors, writers, etc ...),
and fed to multiple specialized retrievers. In the
TREC-Clinical Trials track [46], which deals with
a different retrieval task with large complex queries,
one approach named NQS [40] also followed de-
composition, where a seq2seq model is used to
generate queries given a large clinical trial descrip-
tion. To foster growth in this area, two datasets
were created by scraping the /r/tipofmytongue sub-
reddit [11, 4]. Experiments on these datasets show
that standard retrievers struggle with ToT queries,
motivating further research.

3 Proposed Methods

We address the ToT retrieval task through the imple-
mentation of a retrieval and subsequent re-ranking
pipeline. Specifically, we start by using a system
that, when provided with a query, can efficiently
retrieve the subset of the most relevant movies from
an extensive corpus, focusing on achieving a high
Recall to ensure comprehensive coverage. Then,
the retrieved top-N movies are re-ranked using a
computationally more expensive method, which
should generate superior relevancy estimates.

https://www.reddit.com/r/tipofmytongue/
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Figure 2: Query decomposition and fusion process.
LLM decomposes query into n sub-queries. Top-N
retrieval is performed individually, and the results are
fused through RRF (Eq. 4).

3.1 First Stage Retrieval

The authors of the TREC track provide two
retrieval baselines. A sparse one leveraging
BM25 [47], and a dense one leveraging a
distil-bert [48] model. Given a query q and a
document corpus D, we can use the above methods
to efficiently score every document d ∈ D, hence
performing top-N retrieval on the whole corpus.
BM25 scoring can be written as follows:

sBM25(q, d) =∑
t∈q

tf(t, d)× idf(t)× (k1 + 1)

tf(t, d) + k1

(
1− b+ b|d|

avgdl

) .

(1)

In the previous equation, t is a term of the query, b
and k1 are hyperparameters, avgld is the average
length of the documents in the collection, tf(t, d)
is the frequency of term t within passage d, and
idf(t) is the inverse document frequency for term t.
Assuming we have a model f which maps an input
sequence to an embedding space, dense retrieval
scoring can be computed as follows:

sdense(q, d) = sim(f(q), f(d)) . (2)

In the previous equation, sim is a similarity func-
tion between latent representations. In this work,
we consider the cosine similarity. Next, we in-
troduce training objectives and the techniques we
employed to extend the dense baseline, namely by
considering a self-supervised warm-up step of the
dense retrieval model, more supervised data, and
by leveraging query decomposition.

Table 1: Details of the training data used in this work.
Lengths given in number of GPT-2 tokens.

TREC-ToT Reddit-ToT Movie-ICT

Supervised Yes Yes No
Queries 150 10777 161156
Movies 231852 14863 161156
Avg Query Length 181 144 116
Avg Movie Length 653 454 482

3.1.1 Training Data and Objectives

The training data provided for the TREC competi-
tion, hereby referred to as TREC-ToT, totals 150
queries, each labeled with a movie. The model is
trained with a standard contrastive objective, aim-
ing to minimize the following cross-entropy loss:

L = − 1

n

∑
i

log
esdense(qi,di)

esdense(qi,di) +
∑

j e
sdense(qi,d

−
ij)

,

(3)
where (qi, di) are positive pairs, and {d−ij} is the set
of negative movies for query qi, provided within
the same training batch. The model provided by the
authors uses BM25 to sample negatives in the first
epoch, and self-hard negatives in a second epoch.
Moreover, in-batch negatives are also used, i.e., a
positive example associated with a query qi within
a batch is used as a negative example for all other
qj in the same batch.

While useful, the training data is limited. As
such, we extend the training by using the movie
corpus provided for the task in a self-supervised
warm-up step. The training objective follows Equa-
tion 3, and training examples were sampled follow-
ing an Inverse Cloze Task (ICT) [8] adapted for this
domain, where given a movie textual description,
a sentence is sampled and used as a query. The
remainder of the sentence is labeled as a positive
example for the query. We do not sample negatives
for this task, instead relying on in-batch negatives
alone. We refer to this data source as Movie-ICT.

Furthermore, we leverage the Reddit-ToT
dataset [4] which provides supervised data scraped
from the /r/tipofmytongue subreddit. We consider
only the subset regarding movies, although there
are also samples regarding books. The queries are
similar to the TREC-ToT data but are not labeled
with sentence-level annotations. Table 1 summa-
rizes the datasets we used and their dimensions.

https://www.reddit.com/r/tipofmytongue/
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Figure 3: Re-ranking pipeline. LLM re-orders the top-N movie list. Point-wise re-ranker refines the top-M results
.

3.1.2 Query Decomposition
The original query in this task is much larger than
queries traditionally posed to search systems. Re-
trieving the top-N movies directly from this query
may be sub-optimal due to both its size and its com-
plexity. To overcome this issue, we leverage query
decomposition: each query q is decomposed into
n sub-queries, (q1,...,qn). Then, each sub-query is
used independently to retrieve the top-N movies.
The n rankings are combined through Reciprocal
Rank Fusion:

score(m) =
n∑

i=1

1

k + ranki(m)
. (4)

In the previous equation, k is a hyperparameter
tuned to 60, m is a movie, and ranki(m) is its
position in the ranked list generated by qi.

We use sentence-by-sentence decomposition as
provided by annotations in the dataset, and extend
it by leveraging LLMs to generate the decomposi-
tions. This process is illustrated in Figure 2. To
perform LLM decomposition, we start by clean-
ing social cues in the user input, e.g. “Help if you
can!”. Then, in order to remove other irrelevant
snippets that do not contribute to the retrieval pro-
cess, we prompt the LLM to decompose the queries
into smaller independent sentences that only retain
information that can help in movie title retrieval
(A.1.1). Furthermore, the LLM was asked to retain
important information from previous sub-queries
in the later sub-queries, so as to ensure that each
sub-query has as much useful detail as possible.

Decomposition is applied when doing inference
for first-stage retrieval. For training queries, we’ll
only apply it to the 150 queries in the TREC-ToT
dataset. Applying it to Movie-ICT wouldn’t be
sound because the unsupervised queries are sen-
tences from movie descriptions, and applying it to
Reddit-ToT would be too expensive (A.3).

3.2 Re-ranking

Supervised methods like cross-encoders excel at
re-ranking tasks, but they require amounts of train-
ing data unavailable in this domain. Hence, we
consider LLM-based zero-shot re-ranking, as it has
achieved state-of-the-art results in other tasks [50].

We propose a two-step pipeline for LLM-based
re-ranking, consisting of top-N listwise re-ranking
(where the top-N was obtained from the retriever),
followed by top-M (M < N) pointwise re-ranking.
The idea is to have a broader, less detailed model
reorder the results from the dense-retriever, and
further improve the ranking by applying a more
focused, detailed approach in a smaller sample of
top movies. This pipeline is depicted in Figure 3.

For top-N listwise re-ranking, the model is given
the query and a list of N titles to re-rank. Using only
the title instead of full movie descriptions results
on smaller prompts, which are cheaper and faster
to execute. This, however, relies on the hypothesis
that the LLM has seen enough movie-related data
during training to be able to infer relevancy towards
the query from the title alone. The prompt used
for listwise re-ranking (A.1.4) considers integer
identifiers for each movie in the top-N, and asks
the model to re-order the integers.

Regarding top-M pointwise re-ranking, the
model is used to attribute a score to a single (query,
movie) pair. This allows for a deeper interaction
between the query and the movie, where we are
able to consider more information than just the ti-
tle since we are only dealing with a single sample.
This approach capitalizes on the better interaction
to refine the model’s understanding and provide
better ranking judgments, potentially improving
the overall results of the re-ranking process. The
prompt used for pointwise re-ranking (A.1.5) asks
the model to return a relevancy score for the (query,
movie) pair being analyzed.



4 Experimental Setup and Evaluation

We use the data previously described and summa-
rized in Table 1. Regarding evaluation data, we
perform it on the development split of the TREC-
ToT dataset, since the test set labels are undisclosed
until the results of the TREC track are communi-
cated. This split contains 150 evaluation queries.

Our dense retrievers are based on the
distil-bert model, more specifically the
distilbert-base-uncased checkpoint available
at HuggingFace Transformers [53]. To train the
dense retriever we leverage the SentenceTrans-
formers framework [45]. Pyserini [26] is used for
sparse indexes, and FAISS [20] for the dense ones.
For GPT-4, we leverage the OpenAI API and the
gpt-4-1106-preview model.

In order to stay within our budget, we perform
top-100 listwise re-ranking followed by top-10
pointwise re-ranking. These values were chosen by
inspecting the retriever recall cuts to ensure proper
coverage, and considering the cost to run each re-
ranking step.

Results are reported in terms of the official met-
rics of the task: Recall, and Normalized Discounted
Cumulative Gain (NDCG) [17]. During first stage
retrieval, our focus is on achieving a high Recall,
since the performance on the re-ranking stage is
inherently constrained by the Recall of the initial
retriever. For re-ranking, the emphasis shifts to the
main metric of the task, which is the NDCG@1000.
We also compute the Precision@1 to assess the
model’s ability to present the most relevant movie
as the top-ranked result, reflecting its immediate
utility to users seeking highly pertinent answers.

5 Empirical Results

In this section, we discuss our set of experiments.
Baselines provided by the organizers are replicated,
and we detail the results of our proposed meth-
ods, which lead to a 65% improvement in terms of
NDCG over the GPT-4 baseline.

5.1 GPT-4 Baselines
We start by examining the zero-shot performance
of GPT-4 in this task. The TREC track organiz-
ers provide a GPT-4 baseline, where the entire
query was fed to GPT-4 and it was prompted to
return up to 20 movie titles, ordered by relevance
to the query (A.1.2). We further consider a baseline
where GPT-4 is prompted to return a single movie
title (A.1.3).

Results are shown in the first group of Table 2,
showing that GPT-4 is able to resolve 15% of the
queries with a single guess. This value goes up to
18% when prompted to return more than just one
movie. We attribute this change in precision mostly
to the non-determinism of the model. These results
highlight the difficulty of the task, and motivate the
usage of a different strategy, as GPT-4 alone has
subpar performance.

5.2 First Stage Retrieval

Our first experiments aimed to replicate the TREC
track sparse (BM25) and dense (distil-bert) base-
lines. We were able to do so, replicating the pro-
vided NDCG@1000 value, and also computing
other metrics of interest to us, as reported in the
second group of Table 2. Specifically, we’ll focus
on the Recall@100 for the retrieval step, since the
objective is to provide comprehensive coverage be-
fore the re-ranking step. In this case, we can see
that the dense model achieves a stronger result, im-
proving the BM25 baseline by 62%. However, both
these methods are weaker than the GPT-4 baselines
in terms of P@1 and NDCG. This indicates that
training effective retrievers for this task may be
hard due to the nature of the queries and the lack of
training data, motivating a method that combines
the strength of retrievers and LLMs.

5.2.1 Query Decomposition
In the third group of Table 2 we present the results
for our experiments with query decomposition on
top of a sparse retriever. These results show that
query decomposition is in fact beneficial in terms
of recall. Using sentence-level decomposition on
top of BM25 yielded an 18% improvement in terms
of Recall@100, while the best LLM query decom-
position method yielded a 50% improvement.

For the LLM decomposition, we experiment
with manually removing different sentences from
the query that are annotated in the dataset as “so-
cial” (as in social niceties), “hedging” (sentences
containing uncertainty), or “opinion” (heavily opin-
ionated sentences). Although intuitively it makes
sense that such snippets would not contribute to the
retrieval process, we find that if we remove “hedg-
ing” and “opinion”, the results worsen, most likely
due to loss of information given the high incidence
of such sentences in the data. On the other hand,
removing “social” niceties helps Recall, since this
information does not provide any useful context,
and it also makes our prompts smaller.

https://huggingface.co/distilbert-base-uncased


Table 2: Results on the development splits of the TREC-ToT dataset (150 queries), including baselines, query
decomposition for sparse and dense retrieval, variations in dense retrieval training data, and the final re-ranking
pipeline on top of the best retrieval results.

P@1 R@10 R@100 R@1000 NDCG@10 NDCG@100 NDCG@1000

GPT-4 zero-shot 1 movie 0.153 0.153 0.153 0.153 0.153 0.153 0.153
GPT-4 zero-shot 20 movies 0.180 0.276 0.320 0.320 0.233 0.240 0.240

BM25 0.080 0.093 0.180 0.407 0.086 0.104 0.131
distil-bert (TREC-ToT) 0.040 0.147 0.360 0.660 0.085 0.127 0.163

BM25 + sentence decomposition 0.046 0.100 0.213 0.473 0.060 0.082 0.114
BM25 + LLM decomposition 0.026 0.133 0.273 0.553 0.082 0.111 0.144

distil-bert + LLM decomposition 0.053 0.133 0.340 0.626 0.087 0.131 0.165

distil-bert (Movie-ICT + TREC-ToT) 0.027 0.153 0.353 0.706 0.086 0.127 0.170
distil-bert (Reddit-ToT + TREC-ToT) 0.073 0.233 0.433 0.696 0.145 0.185 0.217
distil-bert (Movie-ICT + Reddit-ToT + TREC-ToT) 0.046 0.213 0.500 0.713 0.126 0.184 0.210

GPT-4 top-100 listwise re-rank 0.266 0.406 0.500 0.500 0.340 0.359 0.359
GPT-4 top-100 listwise re-rank (shuffled top-100) 0.280 0.420 0.500 0.500 0.355 0.370 0.370

GPT-4 top-10 pointwise (re)re-rank (title only) 0.307 0.420 0.500 0.500 0.369 0.384 0.384
GPT-4 top-10 pointwise (re)re-rank (title + description) 0.327 0.420 0.500 0.500 0.381 0.396 0.396

We used the query decomposition methods on
top of the distil-bert model, however, we notice
that while there are gains in terms of NDCG and
P@1, the Recall gets slightly worse. This is prob-
lematic because this metric directly bottlenecks the
performance of the re-rankers.

5.2.2 Training Data

Regarding the effect of training data, results can be
seen in the fifth group of Table 2. Applying either
the supervised Reddit-ToT data or the unsupervised
Movie-ICT before fine-tuning on the TREC-ToT
dataset improves the Recall. Combining both de-
livers the stronger result, achieving our strongest
performance of 50% Recall@100, a 38% improve-
ment over the distil-bert baseline, which considers
the model training only on the TREC-ToT data. It’s
also worth noting that the NDCG achieved by these
retrievers is around 21%, which is better than the
GPT-4 baseline with a single movie. The scarcity
of large-scale training data has been acknowledged
by other authors as one of the challenges for ToT
Retrieval [4, 28]. Our results strengthen this fact,
motivating efforts for both supervised and unsuper-
vised data collection.

Finally, we note we did not perform query de-
composition on queries from Reddit-ToT or Movie-
ICT, since that would be too expensive and out-
of-budget (A.3). However, given the results of its
application in sparse retrieval, and also the improve-
ments in NDCG for dense retrieval when consid-
ering the TREC-ToT queries alone, it may be a
possible path to follow to extend this work.

5.3 Re-ranking

As previously stated, we start by conducting top-
100 listwise re-ranking on top of the best first stage
retriever in terms of Recall. Results on the sixth
group of Table 2 show that this is highly effective,
improving the retrieval NDCG@1000 by 76%, and
the P@1 by 600%. This confirms the hypothesis
that LLMs such as GPT-4 can internally contex-
tualize themselves about movies only given their
titles, even when being asked to resolve complex
information needs such as ToT queries.

It is also worth noting that randomly shuffling
the top-100 input movie titles did not have a nega-
tive influence on the result. In fact, it achieved
a higher performance. While other authors ar-
gue and show that LLMs fail to properly model
long sequences, losing context in the middle [30],
we hypothesize that this result was due to (i) our
prompts not being large enough for context to be
lost (user query + 100 titles occupy on average 1.5k
tokens; the GPT-4 version that we used supports
up to 128k), and (ii) the non-determinism already
observed and reported when zero-shot prompting
GPT-4 with ToT queries.

Regarding pointwise top-10 re-ranking, we ap-
ply it on top of the best listwise result. The last
group of Table 2 shows that pointwise re-ranking
considering only the title already has a positive im-
pact, improving the NDCG obtained in the listwise
step by 7%. Further conditioning the prompt on
the movie description leads us to our best result of
39.6% NDCG, a 65% improvement over the GPT-4
baseline provided by the TREC track organizers.
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Figure 4: Top: Scatter plots depicting data points where GPT failed to resolve the query (NDCG < 1), illustrating
the relationship between NDCG scores and movie-related metrics: age, IMBb votes, and IMDb rating. Each data
point represents the movie labeled as relevant to the query, showing the distribution of NDCG scores in relation to
these metrics. Bottom: boxplots comparing the distributions of the previous metrics for queries where GPT fails
(NDCG < 1), and queries where GPT is successful (NDCG = 1).

This may indicate that while the LLM is able to
contextualize itself with just the title, some movies
can benefit from extra information, probably due
to low popularity which can lead to less training
data. To follow up on this intuition, Section 6
provides a qualitative analysis of the results, aiming
to understand the impact of movie-related metrics
(age, rating, etc...) on the performance of the LLM
re-ranker.

As for the hallucinations of GPT-4 when per-
forming re-ranking given our prompts (A.1.4,
A.1.5), we first note that it adhered to the stipu-
lated prompt output format for 98% of the calls
(for both listwise and pointwise), hence making its
usage possible due to an output that can be parsed
deterministically. For listwise re-ranking, we asso-
ciated integer identifiers with the title, asking the
model to re-rank the identifiers. This was done
to avoid hallucinations when writing title names,
which could lead to mismatches between the titles
in the output, and those in our corpus. Finally, we
note that for the 2% of the cases that the model did
not adhere to the stipulated output, it was due to
the presence of hyperlinks in the text of the query,
for which the model returned an answer informing
that it can’t open links, hence can’t answer. Simply
re-prompting without change solved this problem.

6 Qualitative Analysis

We investigated queries where the GPT-4 re-ranker
was not able to fully resolve to the correct movie
(i.e., where query NDCG < 1), aiming to discern
underlying patterns that might contribute to dimin-
ished performance from an LLM. We hypothesize
that the magnitude of online discussions about a
movie directly impacts the availability of training
data associated with it, subsequently influencing
GPT-4’s effectiveness in handling complex ToT
queries linked to it.

Figure 4 shows NDCG distributions alongside
correlations with specific metrics that act as prox-
ies for a movie’s online discussion volume: the
movie’s age, the number of votes on IMDb2, and
the IMDb rating. These metrics were chosen due
to their potential influence on the extent of online
discourse surrounding a movie. Older movies may
have less contemporary discussions, while the num-
ber of IMDb votes reflects the level of engagement
and interest within IMDb’s community. Moreover,
the IMDb rating offers an insight into the perceived
quality of the movie.

Regarding the movie age, we first note that all
movies linked to the queries analyzed in our study
predate 2022, hence aligning with the training data
available to the GPT-4 model used in this work

2https://www.imdb.com/

https://www.imdb.com/


(gpt-4-1106-preview), which incorporates infor-
mation up to April 2023. Analysis of the data
reveals a weak negative correlation, implying that
there might be a slight tendency for the NDCG to
decrease with older movies, but the relationship is
not very strong. Additionally, on average, we ob-
served that the movies associated with queries that
the model failed to resolve tend to be older com-
pared to those it correctly identified. The number of
IMDb votes follows a similar pattern, with a moder-
ate positive correlation which indicates that NDCG
may increase with the number of votes. Again,
looking at the distributions, the movies associated
with queries that were successfully resolved tend
to have a higher number of votes, reinforcing the
association between higher engagement, and the
model’s successful resolution of queries.

As for the IMDb rating, we observed very simi-
lar distributions for queries where the model suc-
ceeded versus those where it failed, indicating a
minimal impact of IMDb rating on the model’s ac-
curacy in resolving queries. While IMDb ratings
offer insights into public perception, it appears that
the model’s ability to accurately resolve queries
isn’t strongly influenced by this specific metric.
This fact can further strengthen the claim that the
model relies on the volume of discussions or en-
gagement around a movie, as indicated by the num-
ber of IMDb votes, rather than the overall sentiment
conveyed through ratings.

It’s important to highlight that our analysis is
based on a relatively small sample of movies. Con-
sequently, the insights drawn from this data might
not attain statistical significance. However, despite
the limited sample, this study offers valuable initial
perspectives on the potential relationships between
movie attributes and GPT-4’s performance as a re-
ranker for ToT Retrieval. Further exploration with
larger and more diverse datasets could yield more
definitive conclusions.

7 Conclusion and Future Work

This paper presents an effective ToT Retrieval
pipeline that combines the strengths of both a dense
retriever and a GPT-4 re-ranker. Notably, employ-
ing either of the components in isolation resulted
in subpar results, underscoring the benefits of their
combined utilization.

The efficacy of our proposed methods can be
summarized in the following key observations: (i)
query decomposition improved first stage retrieval;

(ii) collecting more training data for ToT Retrieval
further boosts the retrieval results; (iii) GPT-4 dis-
played the ability to re-rank movies based solely
on their titles; and (iv) pointwise re-ranking im-
proved the listwise results, where conditioning the
model on both title and description yielded stronger
results than relying only on the title.

While the listwise re-ranking approach is re-
stricted to domains where LLMs can contextualize
a whole item based solely on a global identifier
(for instance, famous movies, books, or songs), the
remaining components of the pipeline should be
useful for other retrieval scenarios with complex
queries.

As for future work, we start by highlighting that
diversifying reliance on GPT models mitigates the
risk of a single point of failure. Using and fine-
tuning open-source models specifically for this
task could aid reproducibility and extension of this
work [56, 32].

Moreover, given the constraint to our research
budget, re-ranking was performed at limited depths
(e.g., 100 and 10), hence consequently restricted
by recall limitations at those levels. Scaling
these experiments, for example by conducting
full top-1000 pointwise re-ranking, could yield
direct improvements. Still related to scaling, we
could use a stronger base model when training the
dense retriever, for instance one based on the Sen-
tenceT5 [34], which uses both the encoder and the
decoder to generate the representations.

Finally, the token length of the dataset often ex-
ceeds the 512-token limit of retrieval models for
both queries and documents. While not addressed
in this study, employing long-sequence models dur-
ing first stage retrieval could further enhance re-
sults [3, 24, 16].

8 Ethical Statement

With our project solely utilizing TREC data, our
ethical focus centers on adherence to TREC’s data
usage guidelines. While the data is anonymized,
we remain vigilant to prevent any ethical breaches,
especially concerning the privacy of the users who
posed the ToT queries that were used in this work.

We recognize an ethical concern regarding re-
search reproducibility arising from the inherent
non-deterministic nature of outputs generated by
OpenAI’s models, posing challenges in replicating
results consistently.
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A Appendix

A.1 Prompts
Here we show the prompt formats we used through
our experiments. Re-ranking prompts were adapted
from RankLLaMA [32]. The GPT-4 Zero shot
prompt for 20 movies is from the authors of the
TREC-ToT 3 track.

A.1.1 Query Decomposition Prompt

Prompt Input: query q
You are an utility that decomposes complex user-
formed descriptions of movies into smaller independent
sentences that aid in movie name retrieval. Incorporate
as much historical information in each sentence and
lengthen them by appending synonyms and words at
the end that may resemble the movie title and descrip-
tion and help in retrieval.
Original Query: q
Decomposed Query:

A.1.2 GPT-4 Zero-Shot 20 Movies
Prompt Input: query q
You are an expert in movies. You are helping someone
recollect a movie name that is on the tip of their tongue.
You respond to each message with a list of 20 guesses
for the name of the movie being described. Important:
you only mention the names of the movies, one per line,
sorted by how likely they are the correct movie with
the most likely correct movie first and the least likely
movie last. Given below is the movie description:
q

A.1.3 GPT-4 Zero-Shot 1 Movie
Prompt Input: query q
You are an expert in movies. You are helping someone
recollect a movie name that is on the tip of their tongue.
You respond to each message with a single guess for
the name of the movie being described.**important**:
you only mention the names of the movie and nothing
else. Given below is the movie description:
q

A.1.4 Listwise Re-ranking Prompt

Prompt Input: query q, movie titles ti
I will provide you with 100 movies, each indicated by a
numerical identifier between [], e.g., [1], [2]. Rank the
movies based on their relevance to the user query: q.
- [0] t0
- [1] t1
...
- [99] t99
User query: q.
Rank the 100 movies above based on their relevance to
the query. Use your best knowledge about the movies
given their titles. All the movies should be included
and listed using the identifiers, in descending order of

3https://trec-tot.github.io/

relevance. The output format should be [] > [], e.g., [4]
> [2]. Only respond with the ranking results, do not say
any word or explain.

A.1.5 Pointwise Re-ranking Prompt

Prompt Input: query q, movie title t
I will provide you with an user query, a movie title and
a small description. Score for the movie from 1 to 10
in the format ’x,xxx’, with respect to relevance to the
user query. A score of 1 indicates that the movie is not
relevant to the query, and a score of 10 indicates that
you are fully confident that it is a match.
User Query: q
A possible movie is: Title: t[title]. Description:
t[description].
Use your best knowledge about the movie, use its ti-
tle and the description to contextualize yourself. The
output format should be the score alone, following the
format ’x,xxx’ i.e., ’1,212’ or ’7,999’. Only respond
with the score, in the correct format, ’x,xxx’, do not say
any word or explain.
Score:

A.2 Training Details

Hyperparameters for distil-bert training. We keep
the best model among each validation step per
epoch.

• Epochs: 20

• Learning rate: 6e-5

• Weight decay: 0.01

• Batch size: 10

• Hard negatives per query: 5

• Others: default from distil-bert and/or Sen-
tenceTransformers.

A.3 OpenAI API Costs

The costs we incurred with our methods (on aver-
age) for 150 queries:

• Zero-shot 1 movie: 1$

• Decomposition: 3$

• Listwise top-100 re-ranking: 9$.

• Pointwise top-10 re-ranking: 3$ title only; 6$
title and description.

https://trec-tot.github.io/


A.4 Negative Results
We tried some approaches that did not lead to
promising results. Here are their descriptions:

• Pointwise re-ranking through perplexity:
Some OpenAI models return token log proba-
bilities, which allows for the computation of
the perplexity of a sentence. We hypothesized
that the perplexity of a (query, relevant movie)
pair would be lower than a (query, irrele-
vant movie) pair, and that this scoring method
would be more natural than having the model
output a score. However, the strongest model
that has the log probability feature available
(text-davinci-003) did not manage to im-
prove on GPT-4 listwise re-ranking.

• Cheaper re-rank models: Before moving
to GPT-4, we tried GPT-3.5 as our listwise
re-ranker. However, it would return around
60% of malformed ranked lists, i.e., not fol-
lowing the format we stipulated in the prompt
(A.1.4). Hallucinations included multiple re-
peated movies in the list, lists much shorter
than the original 100 movies, identifiers out-
side the 0-99 range, and poorly formatted lists.
This made the result impossible to parse (au-
tomatically).
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