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Abstract
In this paper we address the challenges in
Multihop and Multimodal Question Answer-
ing (MMQA). Through the analysis of existing
MMQA approaches, we identify alignment be-
tween multimodal data and reasoning as the bot-
tleneck in MMQA systems. We hypothesize that
jointly learning to predict relevant patches from
an image along with predicting an answer can
prevent models from over-fitting by forcing it to
learn relationships between image sections and
the question, subsequently improving the reason-
ing process. In this paper we provide the details
as well as analysis of three proposed approaches.
We show that explicitly learning the alignment
between images and text can allow multimodal
models to focus on properties such as “color” and
“shape” in images for VQA tasks. Our code can
be found here. 1

1. Introduction
Multihop and multimodal question answering (MMQA) is
the cognitive process of retrieving and combining relevant
information from diverse knowledge sources (e.g., textual,
visual, and audio) to answer a given question. Humans rou-
tinely face MMQA problems in everyday life. For instance,
when diagnosing a patient, doctors must reason over mul-
tiple medical exams (i.e., distinct knowledge sources) to
answer the question “Does my patient have condition X?”
The development of an artificial intelligence (AI) system
that can automatically and accurately solve MMQA prob-
lems would be a groundbreaking breakthrough. However,
despite the remarkable progress in AI, there is still a long
way to go before AI systems can robustly solve MMQA
problems.

MMQA problems are usually solved in two stages: (a) re-
trieval and (b) reasoning. In the retrieval stage the goal is
to identify the most relevant knowledge sources when pre-
sented with a question of interest and the set of all candidate
knowledge sources. The goal in the reasoning stage is to

1* Equal contribution. See Appendix A

combine information from the relevant sources to answer the
question. While most approaches do fairly well in retriev-
ing the relevant sources, reasoning is still a bottleneck in
the development of robust systems that can handle MMQA
problems. We hypothesize that the alignment between ques-
tion and the patches of the images in these approaches is
not optimal, since most MMQA models typically learn to
align question and image representations implicitly, through
the use of contrastive learning or other techniques.

In this work, we plan to explicitly learn alignment between
question and the image patches. We think that learning
image representation that explicitly capture this alignment
can help capture information that can be used by the model
to answer the question and remove any noise/distraction.

This paper is organized as following. Section 2 presents
an overview of related work. Section 3 introduces our pro-
posed approaches. Section 4 states our research questions,
provides information on datasets, baseline models and exper-
imental methodology. Section 5 presents our results. Finally,
Section 6 shows our conclusions and future research.

2. Related Work
Multi-modal Multi-hop question answering on WebQA:
In-order to deal with multi-modal data for multi-hop rea-
soning, Solar (Yu et al., 2023) proposes to represent images
and tables using textual captions/descriptions. These tex-
tual descriptions are then fed into a language model along
with the query to generate the answer. On the other hand,
(Yang et al., 2022) proposes to extract entities and relations
from the given dataset and encode them along with the em-
bedding of the images and text in a graphical form. These
representations are then passed through a decoder to gener-
ate the answer as well as identify the relevant information.
(Chen et al., 2022) recognizes that answering some of the
questions required more world knowledge that was present
in the provided data. They proposed MuRAG, which main-
tained a multi-modal memory of world facts that might be
required for answering questions. These facts are retrieved
at inference time to help in the generation of the answer.

Based on these previous implementations, at a high level,
the task of multi-hop question answering can be divided into
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retrieval and reasoning.

Retrieval: In this step, usually similarity scores between
the question and candidate knowledge sources are com-
puted. (Yu et al., 2023) uses BERT (Devlin et al., 2018)
embeddings of image captions to calculate the similarity
score. (Chang et al., 2022) represent images with 100 re-
gions predicted by an object detection model, training a
fully connected layer to align the image representation with
BERT-tokenized questions. (Liu et al., 2022) learn a univer-
sal embedding space by optimizing vision-language repre-
sentations contrastively.

Reasoning with Large Language Models (LLM): Given
the ability of LLMs to efficiently process and reason with
text, PromptCAP (Hu et al., 2022) and ImgLLM (Guo et al.,
2023) proposed to convert the images to captions such that
the captions can be processed easily by LLMs and sub-
sequently better help answer the given query. On a sim-
ilar note, (Cheng et al., 2023) proposed to utilize world
knowledge to create specific image captions. Alternatively,
(Merullo et al., 2022) proposed to make use of visual en-
coders to convert the image to an embedding and then use a
neural network to convert this embedding into the language
space. These captions or embeddings can then passed to a
language model for generating the answering. (Lightman
et al., 2023) demonstrate that Large language models per-
form better in reasoning tasks when we divide the objective
into sub-tasks and perform well in each of the sub-tasks.

Other Methods of Reasoning: Some other methods of
reasoning include making use of Graph neural network to
reason over components/elements in images(Yasunaga et al.,
2021; Liang et al., 2021; Yang et al., 2022), using step-by-
step chain of thought/planning based methods to improve
the reasoning process (Zhang et al., 2023b; Wu et al., 2023;
Huang et al., 2022; Lu et al., 2022) and using pre-trained
Vision-language models to perform VQA tasks (Wang et al.,
2021; Zhang et al., 2023a; Chen et al., 2020; Kim et al.,
2021; Wang et al., 2022). Please refer to Appendix E for
more information.

To our knowledge, this paper is the first to propose a method
to solve the questions in the WebQA dataset that makes use
of explicit alignment between images and the text and then
uses this aligned information to reason about the answer.

3. Proposed Approaches
Through the error analysis of the baselines models we note
that a major area where all the models struggle is creating
an alignment between the relevant areas in the image with
the question that can help in answering the question. In
most cases, the models seem to over-fit and collapse to
predicting the mode of the training distribution. Hence, in
this project we explore three different ideas through which

we can explicitly learn to better align the questions with the
parts of the images and then use only the most relevant parts
to reason about the answer. In the following subsections, we
will focus on the multi-modal task of generating an answer
from a set of relevant images. We assume that the set of
relevant images has already been extracted.

3.1. Notation

Throughout this report, we use the following notation :

1. H is the set of questions in the dataset.
2. Qh denotes the h-th question of the dataset.
3. Ih = {Ih,1, · · · , Ih,nI(h)} denotes the set of images as-

sociated with h-th question, where h ∈ {1, · · · , |H|}
and nI(h) is the number of images associated with the
h-th question.

4. Ch = {Ch,1, · · · , Ch,nI(h)} denotes the set of im-
age captions associated with h-th question, where
h ∈ {1, · · · , |H|} and nI(h) is the number of images
associated with the h-th question.

5. Ih,i denotes the i-th image associated with the h-th
question.

6. Ch,i denotes the caption associated with the i-th image
of the h-th question

7. Ijh,i denotes the j-th patch of the i-th image of the h-th
question.

3.2. Attentive Patching

In this approach, we hypothesize that patching the image
and attending to each patch cross-modally helps us find
image representations that takes in consideration the most
relevant patches to answer the question of interest. The
general idea is to reduce the amount of noise generated by
attending to unnecessary parts of the image. This approach
is comprised of two separate models: (1) Patch Selector (to
identify the most relevant image patches) and (2) Answer
Generator (to generate an answer given the image represen-
tations along with original image captions and the question
of interest). Figure 1 depicts an overview of the Attentive
Patching approach. Note the Patch Selector and the Answer
Generator models are trained separately.

3.2.1. MODEL DESCRIPTION

Patch Selector. To identify the relevant patches of the
image, the patches from each image are fed into a vision
language transformer encoder model along with the ques-
tion. We use ViLT (Kim et al., 2021) as our vision language
transformer encoder model. The input to the Patch Selector
model for the h-th question consists of a set of tokens for
the question, image caption, and an image.

A classification head is added to the output model that pre-
dicts the probability of each fixed-size patch in the input
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Figure 1. Attentive Patching approach.

image being relevant. We fix the patch size in such a way
that the input image is divided into a 7× 7 grid of patches.

Answer Generator. Once the Patch Selector model has
been trained, we utilize the Patch Selector as an encoder.
In particular, we pass the question of interest and the asso-
ciated images to the Patch Selector and we use the pooler
output from ViLT to represent the relevant content in the
images. Let Rh,i denote the representation from the pooling
layer of the Patch Selector for the i-th image associated with
the h-question. We pass Rh,i through an adapter to convert
it into the language space: Ah,i = Adapter(Rh,i). We
create a prompt for the language model, where we pass
the embedded questions and original captions and also
Ah,1, · · · , Ah,nI(h). Notice that Ah,i is one token in the
language model. We use T5 (Raffel et al., 2020) as our
language model, and for the Adapter we considered a feed-
forward neural network with three layers, where each layer
comprises a linear transformation followed by the GELU
(Gaussian Error Linear Unit) activation function.

3.2.2. LEARNING

Patch Selector. We train the Patch Selector in a supervised
manner, where the binary cross entropy loss is used for
optimizing the parameters in the Patch Selector model:

Lps = −
∑
h,i,j

[
yjh,i log(p

j
h,i) + (1− yjh,i) log(1− pjh,i)

]

where pjh,i denotes the probability of the j-th patch in the
i-th image for the h-th question be relevant and yjh,i denotes
the true label (0: non-relevant, 1: relevant) for that patch.

Answer Generation. The image representations from the
Patch Selector (converted into the language space), the orig-
inal image captions along with the question of interest are
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Figure 2. Pyramidal Patch Networks during inference.

fed into T5 to generate the answer. A standard masked lan-
guage modelling loss is used for this task as shown in the
equation below.

Las = −
|H|∑
h=1

Th∑
k=1

logP
(
akh|Qh, Ch, Ah, a

1:k−1
h

)

where akh denotes the k-th token of the answer of the h-th
question, Ah denotes the set of image embeddings in the
language space for the h-th question, Th is the number of
tokens in the answer for the h-th question.

3.3. Pyramidal Patch Networks

One disadvantage of dividing an image into fixed size
patches is that it is hard to determine how large the rele-
vant patches would be before seeing the question. A good
example would be of a bird that is extremely small as com-
pared to all other objects in the patch. In this case, we would
benefit more by taking a small sub-patch of the original fixed
size patch and then try to detect what’s happening in that
sub-patch.

3.3.1. MODEL DESCRIPTION

The Pyramidal Networks approach, instead of fixed-size
patches, divides the image into independent grids of size
2 × 2, 4 × 4, and 8 × 8. This division results in patches
of different sizes, denoted as level 3, level 2, and level 1
divisions for 2 × 2, 4 × 4, and 8 × 8 grids, respectively.
We independently train three models to predict the prob-
ability of each patch’s relevance to the question. Similar
to the Attentive Patching approach, Pyramidal Networks
use ViLT as the relevance prediction network, taking the
question and image patch as input. For each image patch,
we obtain one embedding with an associated weight (total of
84 embeddings). A weighted sum of patches yields a single
embedding vector for the image. This vector, combined
with the question, is input into a language model to generate
the answer.This is inspired by Feature Pyramid Networks
(Lin et al., 2017).
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3.3.2. LEARNING

Data Annotation: The data annotation process (described
in section 4.2) involved resized images divided into 7 × 7
grids (224 × 224 pixels). To extend this annotation to various
grid sizes (2 × 2, 4 × 4, and 8 × 8) in the original full-size
image, we reverted each 224 × 224 annotated image to its
original dimensions. The source image was segmented into
a 7 × 7 grid, aligning with the annotated data patches. We
assigned a value of 1 to pixels in relevant patches and 0 to
others, maintaining the original image size with pixel values
of 0 or 1 indicating relevance to the question. Afterward, we
applied max-pooling to this binary pixel map with kernel
sizes computed in such a wat that this process produced
8 × 8, 4 × 4, and 2 × 2 attention grids, where each grid
had a value of 1 for patches containing relevant data and
0 otherwise. These grids serve as labels for image patches
obtained by dividing the image into 2 × 2, 4 × 4, and 8 × 8
grids, indicating the relevance of each patch to the question.

Relevance Predictor: With the preparation of our 2 × 2,
4 × 4, and 8 × 8 annotated data grids, we facilitate the
training of three distinct relevance prediction models, each
designed to operate at a different scale.

We train the Relevance predictor models independently in
a supervised manner where the binary cross entropy loss is
used. The loss for each model is calculated as following:

Lrp = −
∑
h,i,j

[
yjh,i log(p

j
h,i) + (1− yjh,i) log(1− pjh,i)

]

where pjh,i denotes the probability of the j-th patch in the
i-th image for the h-th question being relevant and yjh,i
denotes the true label (0: non-relevant, 1: relevant) for that
patch. j ∈ {1, · · · , 4} for level 3 , j ∈ {1, · · · , 16} for
level 2 and j ∈ {1, · · · , 64} for level 1 division.

Multilevel Dense Representations: The novel part of this
approach as compared to the previous Patch Selector ap-
proach discussed is the inference. At inference time, we
divide the original image into 2× 2; 4× 4 and 8× 8 grids.
Then we pass these patches to the appropriate relevance
prediction models. For each patch, the relevance predic-
tion models output an embedding along with the relevance
weight for the patch. We perform a weighted sum of the
embeddings to get the final representation of the image
(Figure 2).

Answer Generation: The final image representation ob-
tained in the previous step is passed through an adapter
which is then fed into the T5 model along with the ques-
tion for generating the answer. A standard masked language
modelling loss is used for this task as shown in the following

equation

Las = −
|H|∑
h=1

Th∑
k=1

logP
(
akh|Qh, Ah, a

1:k−1
h

)
where akh denotes the k-th token of the answer of the h-th
question, Ah denotes the set of image embeddings in the
language space for the h-th question, Th is the number of
tokens in the answer for the h-th question.

3.4. Joint optimization of patch detection and answer
generation

3.4.1. MODEL DESCRIPTION

In this idea, given a question and a set of relevant images,
we plan to jointly optimize the prediction of the relevant
(fixed size) patches in the image as well as maximizing
the log-likelihood of the generated answer given the image
sources and question.

Figure 3 provides an overview of the network architecture
for this approach. It can be summarized in a sequence of
steps: First, the question is tokenized, and the image is seg-
mented into patches. The tokenized inputs are concatenated
and passed through a visual language transformer. Subse-
quently, contextualized pooled embeddings of the image
patches and the questions are used to predict the relevant
patches for the question. In parallel, we make use of cross-
attention to merge the question embeddings with the image
patch embeddings. The final embeddings from the preced-
ing step (cross-attention) as well as the raw image embed-
dings are converted to the space of a regular language model
using an adapter. Finally, these converted embeddings are
fed into a language model to generate the answer.

Figure 3. Jointly optimising patch prediction and answer genera-
tion.

The input to the model will consist of the tokenized ques-
tion and a set of related images (all positive images are con-
catenated together). The output from the vision language
transformer will consist of a set of question embeddings and
image embeddings. Let eQj

h represent the embedding of the
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j-th token of the question and eIjh,i represent the embedding
of the j-th patch of the i-th question.

Predicting the relevant patches: To predict the relevant
patches, the embeddings of the image patches are pooled
along with the embeddings of the questions. These pooled
embedding are then passed through a classification head to
predict all the patches which are relevant for the question.
In our implementation, the classification layer accepts the
pooled embeddings and then provides one output for each
image patch in the input (indicating the probability that the
patch is relevant for the question):

pjh,i = σ(Linear(Pooled Embeddingh)i,j)

where pjh,i denotes the probability of j-th patch in i-th im-
age for the h-th question being relevant for the question.
Pooled Embeddingh denotes the pooled embedding gener-
ated from the h-th question along with the corresponding
image patches. Linear(Pooled Embeddingh)i,j rep-
resents the output from the linear layer corresponding to the
j-th patch of the i-th image for the h-th question.

Generating the answer: We will make use of cross-
attention between the question and the image embeddings
to further contextualize the embeddings of the question with
the information from the image as shown below.

eQj∗
h = eQj

h +Σkwk ∗ (eIkh,i)

The contextualized question embeddings eQj∗
i along with

the image embeddings are fed into an adapter. In our case,
the adapter consists of a 3-layer MLP with GELU activation.
The output of the adapter is fed into a language model to
generate the answer.

3.4.2. LEARNING

Predicting the relevant patches: To train the classification
head to predict the relevant patches we make use of the
labels for the patches that are available in the manually
annotated dataset. The binary cross entropy loss is used for
this part of the model:

L1 = −
∑
h,i,j

(
yjh,i log(p

j
h,i) + (1− yjh,i) log(1− pjh,i)

)
where yjh,i denotes the true label (0: non-relevant, 1: rele-
vant) of the j-th patch in the i-th image.

Generating the answer: In order to fine-tune the language
model to generate the answer using the embeddings pro-
vided by the adapter, we make use of the standard Masked
Language Modelling loss (with the golden answers in the
data-set as the labels).

L2 = −
∑
h

T∑
k=1

log(P (ak∗h |eQ∗
h, eIh, a

{1:k−1}
i ))

where ak∗i is the target answer token at time-step k. eQ∗
h is

the set of contextualized question embeddings and eIh is
the set of image embeddings.

Combined Loss: The combined loss for the joint optimiza-
tion of the network is L = λL1 + (1− λ)L2 where λ will
be a hyperparameter.

3.5. Chain of Thought Reasoning using MiniGPT-4

3.5.1. MODEL DESCRIPTION

We experimented with Chain of Thought Reasoning using
MiniGPT4 (Zhu et al., 2023). This model consists of a
frozen Vision Transformer (Dosovitskiy et al., 2020). The
image embeddings are fed through a linear adapter layer
before feeding it to a fine-tuned Llama-V2 (7B) Language
Model (Touvron et al., 2023) along with the related text.
This model has been fine-tuned end-to-end to perform a
variety of vision language tasks.

In our approach, we feed in the question along with the set
of related images directly to the MiniGPT-4 model. We try
a vanilla approach in which we prompt the model only with
the question and the images and a chain-of-thought based
approach in which we prompt the model with prefixes such
as “think step by step” or “explain your reasoning” to see
the impact of chain-of-though reasoning on the performance
of question answering.

3.5.2. LEARNING

Since this is a zero shot approach there is no learning hap-
pening as we are not fine-tuning the model for our dataset.
The zero shot approach involved passing the image along
with the question into the model and prompting it to answer
the question in as concise a way as possible; thus trying to
reduce any noise from the same.

4. Experimental Setup
4.1. Research Questions

In this project our goal is to answer the following research
questions:

1. Does teaching the model to focus on the relevant parts
of the image based on the question improve its ability
to answer questions?

2. Does having high level and low level information rep-
resented together augment alignment of Question and
Image?

3. Is a linear adapter enough to translate the information
as well as alignment generated in the embedding space
of ViLT for answer generation in T5?

5



Analysis of Multihop Multimodal Question Answering using joint attentive training and Hierarchical attention networks

4.2. Dataset and Input Modalities

The WebQA dataset (Chang et al., 2022) is a MMQA dataset
that contains questions, knowledge sources (images, cap-
tions and text snippets) and the golden answers. This dataset
contains image-based questions and text-based questions.
The image-based questions can be based on one or two im-
ages: double-image questions require stitching two images
to answer the question of interest, while single-image ques-
tions are more complex. The text-based questions involve
combining knowledge from at least two text snippets. Note,
WebQA does not contain questions that require image and
text snippets as knowledge sources.

In this project we use a subset of the WebQA dataset. In
particular, we only consider the image-based questions (i.e.
which contain image and text modality both) . Additionally,
we assume we know the positive knowledge sources (i.e.
we do not perform retrieval). This subset contains 21,465
samples, of which 18,954 samples are used for training and
2,511 samples for validation.

To train the Patch Selector in a supervised manner, we anno-
tated the patches of 2,940 images from 2018 (9.4%) ques-
tions where each image was resized to 224× 224 pixels and
split into 49 patches, where each patch is 32 × 32 pixels.
Therefore, we have the ground truth (i.e. relevant versus
not relevant) for each patch in the annotated images. To
facilitate the annotation we developed a simple React and
flask app where the annotator only had to click the patches
relevant to the question (Figure 10).

4.3. Multimodal baseline models

4.3.1. SOLAR

Instead of directly dealing with non-textual data, Solar (Yu
et al., 2023) represents the input images as textual descrip-
tions. To ensure that there is minimal loss of information,
Solar generates two types of captions: one at a high level
generically defining the image and one at a low level defin-
ing the objects and their properties.

In the context of the WebQA dataset, Solar consists of two
parts: re-ranking and answer generation. The re-ranking
module helps in filtering the source and selecting the most
relevant ones. A simple neural network model (on top of
the BERT embeddings) is used to compute the closeness
score between the query and the sources. This neural net-
work is trained using the binary cross entropy loss. Finally,
once the most relevant set of sources are selected, the query
along with the relevant sources are fed into a T5 transformer
model (Roberts et al., 2019) which generates the answer.
During training, the T5 model is trained with the ground
truth answers. For more information about Solar please see
Appendix C

4.3.2. STRUCTURED KNOWLEDGE AND UNIFIED
RETRIEVAL-GENERATION (SKURG)

SKURG (Yang et al., 2022) proposes a two-stage approach:

1. Entity-centered Fusion Encoder: This stage aligns
sources from different modalities by focusing on
shared entities. This allows the model to capture rela-
tionships between different pieces of information and
build a comprehensive understanding of the context.

2. Unified Retrieval-Generation Decoder: This stage in-
tegrates intermediate retrieval results with the answer
generation process, allowing the model to dynamically
adjust the number of retrieval steps and generate an-
swers based on the most relevant information.

The training of SKURG involves optimizing various loss
functions responsible for alignment between sources and
entities, confidence estimation of connecting the source to
the knowledge graph, retrieval and answer generation. For
details see Appendix B.

4.4. VLP + x101FPN

The VLP + x101FPN baseline proposed in (Chang et al.,
2022) makes use of two separate VLP (Zhou et al., 2019)
models for the sub-problems of identifying relevant clues
and answering questions in the WebQA dataset.

To form the input to the model, text inputs were tokenized
using BERT (Devlin et al., 2018), while each image was
characterized by 100 regions extracted from a variant of the
Faster RCNN architecture. In the retrieval/re-ranking pro-
cess, a VLP model processes candidate clues and a question,
outputting probabilities of relevance.For answer generation,
another VLP model uses relevant clues to generate answers.
Please refer to Appendix D for more information.

4.5. Experimental Methodology

We used the same training validation split provided in the
WebQA dataset. For evaluation of the baseline models, we
locally computed the accuracy and the fluency for each
question in the validation dataset. The locally computed
metrics are approximate since we do not have access to
the exact reference solutions/techniques that are used by
WebQA.

The following experiments (hyper-parameters) were used
for executing the ideas :

1. Attentive Patching. We used the Adam optimizer
(lr=5e-5, batch size=16) for both the Patch
Selector (trained for 5 epochs) and Answer Generator
models (trained for 30 epochs). In our experiments, we
tested a model without fine-tuning the ViLT model for
creating image embeddings and compared its perfor-
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Table 1. Overall performance (%) for answering image-based ques-
tions in the WebQA validation dataset.

Model QA-Fl ↑ QA-Acc ↑ QA ↑

VLP + x101FPN 36.0 45.0 16.2
SKURG 52.5 63.8 36.3
Solar 46.0 60.1 27.6

Attentive Patching 51.7 59.3 33.3
Pyramidal Networks 47.4 45.4 21.7
Joint Patching Answering 34.9 52.7 19.9

mance with our approach that involves using embed-
dings from a fine-tuned ViLT model.

2. Pyramidal Networks: Relevance prediction mod-
els in Pyramidal Networks were trained using Adam
optimizer (lr=2e-5, batch size=32) for 20
epochs. The answer generator was trained for 30
epochs (lr=5e-5, batch size=16). To test our
research question, we experimented by replacing im-
age embeddings in the final language model with zeros
and random numbers. This helped assess the impact
of hierarchical embeddings on improving question an-
swering.

3. Joint Optimization The joint optimization model
was trained using the Adam optimizer (lr=5e-5,
batch size=32). Additional experiments were
conducted:
(a) Different Learning Rates: We explored a learn-

ing rate of 1e-3 for the adapter and 5e-5 for
the language model and ViLT model. This did
not enhance the model’s learning, possibly due to
convergence to the same final loss over epochs.

(b) Contextualized Image Embeddings Only: We
investigated using only contextualized image em-
beddings, excluding question embeddings, as in-
put to the language model. Refer to the results in
the next section.

(c) Multi-layer Adapter: Instead of a linear adapter,
we experimented with a multi-layer adapter. Refer
to the results in the next section.

5. Results and Discussion
5.1. Overall Performance and Analysis of Ideas

Table 1 displays the overall performance in answering
image-based question in the WebQA validation datset for
all proposed approaches and baselines.

5.1.1. ANALYSIS: JOINT OPTIMIZATION OF PATCH
CLASSIFICATION AND ANSWER GENERATION

High Level Discussion. Table 2 provides a comparison
between the performance of our model and the current state
of the art (Solar). From the improved performance in the
question of the “color” and “shape” category, see that our

Table 2. Accuracy comparison between Ours and Solar.
Category Accuracy

(Ours)
Accuracy
(Ours Without
classification)

Accuracy (So-
lar)

Others 0.72 0.77 0.77
YesNo 0.33 0.31 0.42
Shape 0.22 0.21 0.14
Color 0.36 0.31 0.32
Choose 0.76 0.75 0.85
Number 0.38 0.36 0.42

Figure 4. Color based Confusion Matrices (a) left: Solar (b) right:
Ours

model is actually able to capture the elements of color and
shape from the image(s) that are being passed. The increase
in the performance of the model could be because our ap-
proach actually considers the embeddings from the images
instead of the just making use of the captions from images
(like Solar). The embeddings from the image would contain
more information as compared to the limited information in
the caption which can be utilised by the language model to
answer the question.

Further, in Figure 4 we see the comparison of the confusion
matrix of Solar with our method (color based questions).
We see that while Solar tends to predict the majority class as
compared to our method in which we can see more diversity
in the predictions as well as the diagonal forming in the
confusion matrix.

Discussion; Impact of joint optimization: To assess the
importance of optimizing both image patch classification
and answer generation, we conducted an ablation study
in which the model was optimised with as well as with-

Figure 5. (a)left: Validation loss with joint optimization (b) right:
Validation loss with contextualized image embeddings only
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out the classification objective. The model’s performance,
especially in “color” category questions, improved when
incorporating the classification objective (Table 2). This
enhancement suggests that the classification objective helps
the ViLT model generate image patch representations more
relevant to questions, reducing noise and enabling the lan-
guage model to produce better answers.

Figure 6. (a) left: Performance with linear adapter (b) right: Per-
formance with MLP adapter

Discussion; Impact of the adapter architecture We ex-
amined the impact of adapter architecture on model perfor-
mance using both linear and multi-layer adapters. A 3-layer
MLP adapter with GELU activation proved more effective
in converting from ViLT’s embedding space to T5(Figure 6)
as compared to a linear adapter. The improved performance
with the MLP adapter may be due to the WebQA dataset’s
inclusion of proper nouns, where precise spellings are im-
portant for minimizing loss. The non-linear MLP adapter
captures these intricacies better than a linear one.

Discussion; Importance of the question in answering To
test if the model’s focus on the image can be improved,
we conducted an ablation by contextualizing image embed-
dings with question embeddings using cross-attention. The
resulting embeddings, excluding the question embeddings,
were fed into the language model. Figure 5(b) displays
the validation loss for the network trained with these con-
textualized image embeddings. The model’s performance
was not as good as the one shown in 5(a). This difference
may be due to the WebQA dataset, where answers often
require direct information from the questions. Contextualiz-
ing image embeddings with questions may lead to a loss of
information, impacting the model’s ability to construct accu-
rate answers. Refining the dataset to minimize redundancy
between questions and answers could address this issue.

5.1.2. ANALYSIS: ATTENTIVE PATCHING

Discussion; Importance of the Patch Selector. To test
whether the Patch Selector helps with find better represen-
tation for the image(s) and consequently generate better
answers, we conducted an ablation study in which the An-
swer Generator model receives image embeddings from the
Patch Selector as originally designed (i.e. with Patch Se-
lector), or directly from ViLT without any fine-tuning (i.e.

Figure 7. AUC for training Patch Selector under different training
data sizes.

without Patch Selector). Table 3 shows the overall perfor-
mance for answering image-based questions in the WebQA
validation dataset for the Attentive Patching approach with
and without the Patch Selector component. We observed
that the QA accuracy and QA Fluency are higher without
the Patch Selector. This is somewhat surprising, as at first
these results suggest the Patch Selector might not help in
generate the answer.

Table 3. Overall performance (%) for answering image-based ques-
tions in the WebQA validation dataset - Attentive Patching with
and without the Patch Selector component.

Patch Selector QA-Fl ↑ QA-Acc ↑ QA ↑

On 51.71 59.28 33.27
Off 51.56 61.99 34.88

To understand better the reason behind the small decrease in
performance when using the Patch Selector, we computed
the QA accuracy by type of question (Table 4). We notice
the Attentive Patching with Patch Selector had a consider-
able drop in performance specially in color type questions
(from 45.84% to 26.80%). This could be because the the
best Patch Selector we trained yield an area under of ROC
curve of only 0.78 (see Figure 11 in Appendix H). Conse-
quently, the Attentive Patching with a Patch Selector that
does not discriminate as well might find some colors im-
portant for the task of classifying the patch as relevant to
the question, but those questions might not actually be rele-
vant to the question. Figure 7 shows the AUC for the Patch
Selector models trained on different data sizes. Notice the
AUC increases with data sizes, which suggests with higher
training dataset we would have found a better Patch Selector.

Table 4. QA Accuracy (%) for answering image-based questions
in the WebQA validation dataset - Attentive Patching with and
without the Patch Selector component.

Patch Selector Y/N MC Color Shape Number Other

On 45.17 85.98 26.80 17.34 43.71 76.06
Off 50.84 84.43 45.84 15.77 41.11 76.46
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5.1.3. ANALYSIS: HIERARCHICAL PATCH RELEVANCE
PREDICTION AND ANSWER GENERATION

High Level Discussion. Table 5 compares the Hierarchical
Patching method with other baselines and our ideas, trained
on 10% of the WebQA dataset due to time constraints. Re-
sults suggest its performance is not as strong, potentially
due to limited training data and challenges in adapter train-
ing convergence (because the model is over-fitting on the
textual data). To enhance performance, we propose training
on more data (entire WebQA dataset) and pre-training the
adapter with text embeddings from ViLT and T5 embedding
layers.

Discussion; Importance of making use of Hierarchical
image embeddings: To evaluate the combined image repre-
sentation, we trained a network using random noise instead
of the hierarchical network’s image representation. Both
networks were trained with identical hyperparameters and
the same number of training steps for a fair comparison. Re-
sults indicate improved performance in the color category
but a decrease in other categories when using a valid image
representation. We suspect this is due to the T5 model’s
limitation in capturing all image semantics with just one
token.

Table 5. Accuracy comparison between with the image representa-
tion vs random noise representation.

Category Accuracy (Ours) Accuracy (Random noise)

Others 0.69 0.71
YesNo 0.22 0.37
Shape 0.10 0.20
Color 0.17 0.15
Choose 0.83 0.85
Number 0.38 0.41

5.1.4. MINIGPT4 ZERO SHOT ANALYSIS

Table 6. Accuracy with chain of thought reasoning (MiniGPT-4)
for different question categories

Others YesNo Shape Color Choose Number

0.8364 0.3047 0.2197 0.3346 0.9287 0.2182

We observed that even with Chain of Thought Reasoning;
the MiniGPT4 model was not performing well with zero
shot prompting (Table 6). Better reasoning alone is not
enough to solve the WebQA task. Chain of thought reason-
ing using MiniGPT-4 led to errors when the model did not
focus on the right parts/elements of the image. The model,
we hypothesize, is biased in some way to the data it was
pre-trained on (see appendix F for more qualitative exam-
ples). The other approaches mentioned in this paper can
augment such chain-of-thought reasoning based methods by
improving the alignment between images and text.

5.2. Research Question 1: Does teaching the model to
focus help generating answers?

In the previous section, we discussed joint optimization
of the model to concentrate on specific image regions as
well as generating the answers. This approach improved
the model’s performance, especially in answering questions
about “color” and “shape”. By allowing the language model
to focus solely on relevant image parts, it can better predict
accurate color or shape information without being distracted
by other scene elements. Additionally, we suggest that
further improving the model’s performance is possible by
pre-training the T5 language model on visual tasks like cap-
tioning and VQA. This pre-training can enhance the model’s
ability to recognize features from image embeddings. Over-
all for this research question we conclude that teaching the
model to concentrate on relevant image parts improves its
accuracy in answering questions.

5.3. Research Question 2: Does hierarchical information
represented together augment alignment of
Question and Image?

From the analysis of the Pyramidal patch networks, we
do not see a major improvement in the accuracy of the
model with the use of embeddings that were created in a
hierarchical method. This could be because our model is
still over-fitting on the textual data that is being provided
and the adapter to convert the embeddings from the space
of ViLT to T5 is not being trained to convergence before the
T5 model over-fits. This means that the T5 model is not able
to make use of the information from the images. Hence, the
second research question at this point is inconclusive. One
way to be able to improve the model could be to pre-train
the adapter with text embedding pairs from ViLT as well as
T5. This could ensure that the T5 model is able to make use
of information from the images to answer the question.

5.4. Research Question 3 : How efficient is a linear
adapter?

Through the analysis of the joint optimization approach
in the previous section we see that a multi-layer non-linear
adapter is actually better in our case since it is able to capture
more intricate details as compared to a linear adapter. Hence,
we conclude that in case the problem statement requires
intricate details (such as spellings etc.) to be captured, a
non-linear multi-layer adapter is better.

6. Conclusion and Future Directions
This paper introduces three novel methods to explicitly en-
hance multimodal question answering models by refining
image-text alignment. Additionally, it investigates Chain
of Thought Reasoning with MiniGPT-4. Ablation studies
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demonstrate that the proposed methods improve alignment,
leading to enhanced reasoning. Notably, improvements are
observed in question categories requiring focus on object
colors and shapes. Future research directions include: (1)
pre-training T5/language-model on vision-language tasks,
(2) utilizing image segmentation to identify relevant contin-
uous segments, (3) using CLIP embeddings for improved
image-text embedding matching, and (4) dataset curation to
remove redundant wording from gold standard answers.
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A. Appendix A
Distribution of work for the final report:

1. Deigant Yadava (25%) :

(a) Data annotation for patch classification
(b) Implementation of Idea 3/third proposed approach

involving the joint optimization of answer genera-
tion and patch classification.

2. Joao Monteiro (25%):

(a) Data annotation for patch classification
(b) Implementation of Idea 1/first proposed approach

involving the pre-training of the patch classifica-
tion network and then using the language model
to generate the answer.

3. Vinay Nair (25%):

(a) Data annotation for patch classification
(b) Data generation and implementing preprocessing

pipeline to convert the Idea1 annotated dataset to
Idea2 dataset.

4. Dheeraj Pai (25%):

(a) Data annotation for patch classification
(b) Implementation and training the ViLT and the

adapter for Idea2 (Pyramidal approach). Imple-
mentation and training the T5 language model to
adapt to the image embedding generated by ViLT.

B. Appendix B
The training of SKURG involves optimizing an overall loss
function that is the sum of the five loss functions:

1. Alignment between sources and entities: To align
the head entities from the knowledge graph with the
sources (i.e. image or text) SKURG utilizes a cross-
entropy loss:

La = − 1

n

n∑
i=1

log
exp si,i+∑N
j=1 exp si,j

where n is the number of source, N is the number of
head entities si,j is a similarity score between the i−th
source and the j−th entity.

2. Confidence estimation of connecting the source to
the knowledge graph: the similarity score si,j cannot
guarantee that the i−th source is indeed relevant to the
the i−th source and the j−th entity. Thus, SKURG

computes a confidence score to represent the probabil-
ity that a source should be aligned with the knowledge
graph. This is done through the following loss:

Lc = − 1

n

n∑
i=1

(p̂i log pi + (1− p̂i) log (1− pi))

where pi is the confidence of whether the i−th source
is related to any head entity in the knowledge graph
and p̂i is a binary variable indicating whether the i−th
source contains any head entity.

3. Retrieval: The retrieval in retrieval-generation de-
coder starts at time step |Q| (i.e length of the question).
SKURG utilizes two loss functions:

Lr = − 1

M

|Q|+M∑
t=|Q|

log
expαt,t+∑n
i=1 expαt,i

Ls = − 1

M

|Q|+M∑
t=|Q|

(ĝt log gt + (1− ĝt) log (1− gt))

where αt,i denotes the cross-attention scores of the
i−th source at time step t, αt,t+ denotes the cross-
attention score of the target source at time step t, M is
the number of retrieval steps, and ĝt indicates whether
to output the retrieved evidence or end retrieval.

4. Answer generation: SKURG minimizes the negative
log-likelihood for answer generation. More specifi-
cally,

Lg = −
|Q|+M+|A|∑
t=|Q|+M

logPt

(
ai|HE

R , a<t

)
where HE

R is the encoded representation to the re-
trieved sources and a<t are the tokens in the answer
prior to time step t.

C. Appendix C
In the context of the WebQA dataset, Solar consists of two
parts: re-ranking and answer generation. The re-ranking
module helps in filtering the source and selecting the most
relevant ones. A simple neural network model (on top of
the BERT embeddings) is used to compute the closeness
score between the query and the sources. This neural net-
work is trained using the binary cross entropy loss. Finally,
once the most relevant set of sources are selected, the query
along with the relevant sources are fed into a T5 transformer
model (Roberts et al., 2019) which generates the answer.
During training, the T5 model is trained with the ground
truth answers.
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Figure 8. SKURG approach - Source: (Yang et al., 2022)

Re-Ranking: Once all the image sources have been con-
verted into text, a simple neural network model (on top of
the BERT embeddings of the text) is used to compute the
closeness score between the query and each source. This
score is passed through a sigmoid function to compute the
probability of the source being relevant. Equation 1 pro-
vides mathematical notation to compute the score of each
clue (zi) for a question (q).

si = Linear (BERT (zi ⊕ q)) (1)

The re-ranking model is trained using the binary cross-
entropy loss using the golden labels (yi) as shown in Equa-
tion 2.

Li = − (yi log (σ(si)) + (1− yi) log (1− σ(si))) (2)

Answer Generation: Once the relevant set of sources have
been extracted for a given question, Solar makes use of a T5
(Roberts et al., 2019) based language model to generate the
answer given the question and relevant sources. The goal of
the T5 based language model would be generate an answer
that has the maximum probability under the given question
and sources. The T5 model is trained end-to-end using the
golden answers (a∗) that are provided in the dataset. The
standard masked language model loss is used for training
the T5 model as show in Equation 3

L = −
T∑

t=1

logP (a∗t |q, z, a1:t−1) (3)

D. Appendix D
The VLP + x101FPN baseline proposed in (Chang et al.,
2022) makes use of two separate VLP (Zhou et al., 2019)

models for the sub-problems of identifying relevant clues
and answering questions in the WebQA dataset.

Input Representation: To form the input to the model, text
inputs were tokenized using BERT (Devlin et al., 2018),
while each image was characterized by 100 regions ex-
tracted from a variant of the Faster RCNN architecture with
a ResNeXt-101-FPN backbone pre-trained on the Visual
Genome corpus (Krishna et al., 2017). The standard 2048-
dimensional features from the initial fc1 layer of Faster
RCNN were utilized, and the subsequent fc2 layer was fine-
tuned for the task.

Retrieval/Re-ranking: From the candidate set (S) of clues,
in-order to retrieve the relevant clues VLP + x101FPN
passes the representation for each candidate (si) along with
the question through a VLP model which outputs a probabil-
ity of the clue being relevant. For any question, given a set
of P positive clues and N negative clues, the following loss
function is used to fine-tune the VLP model (where p(si) is
the output from the VLP model):

Lossretrieval =
∑
si∈P

log p(si) +
∑
si∈N

log(1− p(si)) (4)

Answer Generation: Once the relevant clues (Sr) for a
question have been identified, another VLP model is used to
generate the answer given the question and the set of relevant
clues. The answer is generated auto-regressively and the
standard masked language modelling loss is used to train
the modelling. The objective for the language modelling
loss is to maximize the probability of the correct answer
token (a∗i ) given the context (Q, Sr) and the set of tokens
that have been generated till now a1:i−1 :

MLM Loss = −
n∑

i=1

(log(P (a∗i |Q,Sr, a1:i−1))) (5)

E. Appendix E
Reasoning with Graphs: Graphs are one of the most ex-
pressive and structured ways that can be used for reasoning.
From among the methods that perform question answering
based on knowledge graphs (KG), (Yasunaga et al., 2021)
proposes to make use of a language model to identify the im-
portant parts of the knowledge graph and then use a Graph
Neural Network (GNN) to reason over the KG and predict
the correct answer option. Similarly, (Liang et al., 2021)
tackles the task of VQA using GNNs where each image is
represented as a scene graph.

Reasoning with Planning: Recent works have used an in-
termediate step of planning while reasoning and generating
the answers. (Zhang et al., 2023b) use multi-modal chain-
of-thought reasoning for visual question answering. (Wu
et al., 2023) use the ensemble of audio, video and image uni-
modal encoder and decoders along with an LLM to build a
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“Any-to-Any” multi-modal generator. (Huang et al., 2022)
explore ways to use Language Models to generate an “Inner
monologue” for the robot to plan the next steps to achieve
a goal. The work focuses on applying “Inner monologue”
in a multi-modal setting where the query is in text and the
input to the robot to be visual.

Reasoning with Vision Language Models: One of the
most common way to perform reasoning for VQA is to use
an existing pre-trained model and then fine-tune it according
to the dataset. (Wang et al., 2021), (Zhang et al., 2023a),
(Chen et al., 2020), (Kim et al., 2021), (Wang et al., 2022)
introduce multi-modal transformer models that differ in their
training strategies/objectives.

F. Appendix F
In Figure 9, we see an example of a question in which
chain-of-thought reasoning fails because the model is not
able to focus on the parts of the image that are relevant for
the question. In this example, we see that for the question
”What is the color of the pavement next to the bus” , the
correct answer should be ”Red” but the model answers
”blue” probably because it focuses on the color on the bus
instead of the pavement. The other approaches mentioned
in this paper can augment such chain-of-thought reasoning
based methods by improving the alignment between images
and text.

Figure 9. Example of a failure in chain-of-thought reasoning

G. Appendix G
Figure 10 shows the interface for the data annotation appli-
cation that was designed.

Figure 10. Annotation app example.

H. Appendix H
Figure 11 shows the ROC for the Patch Selector on the
validation dataset.

Figure 11. ROC for Patch Selector on the validation dataset.

H.1. Training Pyramidal Patch Network

Figure 12, 13, 14 shows the ROC for the Pyramidal Patch
Network (Level1, Level2, Level3 respectively) on the vali-
dation dataset.
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Figure 12. ROC for Pyramidal Patch Network (level1) on the vali-
dation dataset.

Figure 13. ROC for Pyramidal Patch Network (level 2) on the
validation dataset.

Figure 14. ROC for Pyramidal Patch Network (level 3) on the
validation dataset.
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